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Abstract

Objective: The purpose of this study was to review available literature about the effect of photobiomodulation
(PBM) on mesenchymal stem cells (MSCs). Background data: The effects of coherent and noncoherent light
sources such as low-level lasers and light-emitting diodes (LEDs) on cells and tissues, known as PBM, form the
basis of photomedicine. This treatment technique effects cell function, proliferation, and migration, and plays
an important role in tissue regeneration. Stem cells have been found to be helpful elements in tissue regen-
eration, and the combination of stem cell therapy and laser therapy appears to positively affect treatment results.
Materials and methods: An electronic search in PubMed was conducted of publications from the previous 12
years. English language articles related to the subject were found using selected key words. The full texts of
potentially suitable articles were assessed according to inclusion and exclusion criteria. Results: After evalu-
ation, 30 articles were deemed relevant according to the inclusion criteria. The energy density of the laser was
0.7–9 J/cm2. The power used for visible light was 30–110 mW and that used for infrared light was 50–800 mW.
Nearly all studies showed that low-level laser therapy had a positive effect on cell proliferation. Similar
outcomes were found for LED; however, some studies suggest that the laser alone is not effective, and should
be used as an adjunct tool. Conclusions: PBM has positive effects on MSCs. This review concluded that doses
of 0.7–4 J/cm2 and wavelengths of 600–700 nm are appropriate for light therapy. The results were dependent
upon different parameters; therefore, optimization of parameters used in light therapy to obtain favorable results
is required to provide more accurate comparison.

Introduction

Human organ tissue can be lost from injury, con-
genital defect, or disease.1 Impaired tissue should be

replaced by normal healing or by autograft, xenograft, or
allograft, depending upon the defect size. Healing can be
facilitated using guided tissue engineering approaches. These
approaches are useful when the defect size is relatively small,
because they persuade cells to migrate from surrounding host
tissue to prepared scaffolds. This procedure can be influenced
by the availability of a proper cell source, distance required
for cell migration from surrounding host tissue (depending
upon the size of the defect), cell response to migration, blood
supply for cell nutrition, and growth factors.

When there is a large defect or impaired cell supply, cell
transplantation, which requires progenitor cell sources, is
needed, and cell expansion must provide a sufficient number
of cells. Autologous cells from the host can be used; however,
there are limitations on donor sites and the extended time

required for cell expansion. Allogeneic or xenogeneic cells
are not limited in quantity or expansion time; however, an
immunological response should be expected, because of the
differing genetic content and matching human leukocyte
antigens (HLAs).1–3

Another method is new tissue engineering. Three requisites
can be used to regenerate tissue in this manner. First, a
scaffolding is required to support cells seeded in vitro. The
architecture of the scaffold should be effective for cell re-
sponse and tissue formation.4 Second is the use of growth
factors (GF) delivered through the scaffold as a drug delivery
system to encourage cells for engineering tissues. The third
approach is the use of cell sources. Primary cells are used for
tissue regeneration. This process focuses on three types of
stem cells, depending upon on the cell origin and experi-
mental manipulation: embryonic stem cells (ESC), adult stem
cells derived from embryos and adult tissue, and induced
pluripotent stem cells (iPSC) derived from adult somatic cells
by genetic manipulation. ESC and iPSC are pluripotent stem
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cells that can develop into all type cells, whereas adult stem
cells are multipotent cells that can differentiate to specific
types of cells.3,5,6

Stem cells are immature, unspecialized cells with self-
renewal features that provide a cell source for tissue regen-
eration, or to replace damaged, missing, or impaired tissue or
organs.3,5 Differentiation is a critical cellular stage for these
cells that allows them to provide specialized cells to form
different tissues or organs. GFs are useful in tissue engi-
neering because they increase stem cell differentiation to
other cells. Other factors also affect this procedure, such as
cell type, extracellular matrices, and soluble factors (GF).3

Mesenchymal stem cells (MSCs) are mesenchymal stromal
cells regardless of their tissue origin. They were originally found
in bone marrow; however, they can be harvested from other
adult tissue.7 Pittenger et al.8 revealed that these multipotent
stem cells can differentiate into osteogenic, chondrogenic, and
adipogenic cell lines.3 MSCs can be isolated from many pre,
peri- and postnatal tissues or organs. Prenatal sources consist of
first and second trimester fetal blood, liver, and bone marrow
and second trimester spleen, lung, metanephros, dermis, pan-
creas, and thymus. However, the umbilical cord, umbilical cord
blood, amniotic fluid are the major perinatal MSC supply. Many
postnatal organs can be sources of MSCs, including the skin,
adipose tissue, blood vessels, and dental pulp. 3,9,10

There are several ways to promote proper cell expan-
sion, such as the use of GFs in culture media,11 and photo-
biomodulation (PBM). GFs stimulate and guide stem cells to
proliferate and differentiate to proper cell numbers and types.
Soon after the first laser was introduced, it was used in medical
applications.12 Photomedicine embraces the study and appli-
cation of light (coherent or noncoherent) with respect to health
and disease.13–15 It has been used in dermatology (UVA
therapy), surgery, interventional radiology, optical diagnostics,
cardiology, and oncology (photodynamic therapy). Photo-
biostimulation therapy promotes cell growth, regeneration, and
healing of tissue by means of light sources such as light-
emitting diodes (LEDs) and low-level lasers (LLL), or those
that emit light in the visible red to near infrared (NIR) range
and are known as PBM.16

Several basic in vitro and in vivo studies have discussed the
effects of PBM. This effect can be either inhibitory or stimu-
latory for pain control, as an anti-inflammatory, or for meta-
bolic or immunological effects.17 PBM affects the activity of
endogenous enzyme photoaccepters for initiation of cell sig-
naling pathways. It alters cell and tissue metabolism and cell
proliferation. Cytochrome C oxidase enzyme has been iden-
tified as one of the major endogenous photoacceptors; how-
ever, the mechanism of the therapeutic laser remains unclear16

with regard to its cellular and molecular effects. It appears to
improve tissue engineering in keeping with stem cells.

Different coherent or noncoherent light sources are used
for PBM. Although the diode laser is most frequently used for
laser therapy, the He-Ne, Argon, Nd:YAG, and Er:YAG la-
sers have different wavelengths, power requirements, energy
densities, and types of exposure, and have been successfully
used for cell activation.18 LEDs offer advantages such as low
price, acceptable efficacy, high switching rate, and long
life.19,20 PBM has various biostimulatory effects on wound
healing,21–24 extracellular matrix synthesis,25 and promotion
of cellular proliferation and differentiation in tissues such as
bone,26–29 nerves,30 and skin.31–36

Studies in this area are few and contradictory. The present
study reviewed the articles to develop an understanding of
the effect of PBM on MSCs to help design more accurate
studies in the field of PBM.

Materials and Methods

PubMed and Science Direct electronic databases were
searched for articles about the effect of PBM on MSCs. The
keywords used were laser therapy, low-level laser [MeSH],
phototherapy [MeSH], lasers, semiconductor [MeSH], photo-
chemotherapy [MeSH], LED [MeSH], therapeutic lasers
[MeSH], and mesenchymal stem cells [MeSH]. The articles
retrieved were limited to the English language and were for the
period from 1994 to 2015. Data extraction involved cell origin,
laser parameters, and final results. Because photobiostimula-
tion therapy and stem cells are a new domain in the human
sciences and much change has been discovered to previous
findings, it is logical that the majority of related studies would
be found in electronic journals mostly published, after 1994.

The articles selected were characterized as in vitro or in vivo
experimental studies and clinical trials that evaluated the ef-
fects of irradiation from LLLs and LEDs on MSCs. The initial
selection included a review of articles; those that did not reflect
the purpose were excluded. All articles that evaluated all lasers
types except from other light sources such as Xenon flash
lamps were included. Articles that assessed the phototherapy
effect on other stem cell types, such as dental follicle stem
cells, were excluded. This article only focuses on the photo-
stimulatory effect on the MSCs. The abstracts of other studies
were analyzed. At the end of the selection process, after
reading the full texts, articles that matched inclusion criteria
were reviewed. Figure 1 shows the process of studies selection.

Results

The initial search uncovered 210 articles. After evaluation
of the titles and abstracts, 32 articles were duplicated between
databases, 18 and 78 articles were excluded because of unas-
sociated light sources and cell types, respectively. Thirty ar-
ticles were finally included. The data from the studies describe
the parameters of the light sources. Diode lasers were the most
commonly used laser type in the reviewed studies, which can

FIG. 1. The process of studies inclusion/exclusion.
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be distinguished by specific laser such as GaAs,37

GaAlAs,29,38–41 InGaAlP,42,43 He-Ne,44,45 and Nd:YAG.35,46

Laser type was not available in two studies.47,48 Laser wave-
length in both of these was 400–405 nm.

Discussion

Advances in biomedical technology have increased ap-
plications for regenerative treatment. PBM of therapeutic
light sources such as LEDs or LLLs are some of these
technologies. Light energy allows cellular and molecular
stimulation of target tissues. The result is regenerative
treatment20,39,49–51 through the effect of chondroblast, neu-
roblast, and fibroblast proliferation or collagen synthesis and
nerve regeneration.

PBM, by visible or NIR light, causes physical or chemical
changes in cells. Although some mechanism of laser biosti-
mulation was discovered, it is not exactly known.47 Different
mechanisms have been discussed, such as light absorption by
mitochondrial enzymes with localized heating, and photon
absorption by electron transport chain enzymes in the mito-
chondrial respiratory chain by flavins and cytochrome C.38

Karu et al.52 suggested that irradiation by LLL intensifies
formation of a transmembrane electromechanical proton gra-
dient in mitochondria. One possible mechanism is the ab-
sorption of laser energy by intracellular chromospheres, which
is converted to metabolic energy. Karu et al. showed that He-
Ne energy increased adenosine triphosphate (ATP) levels.

In this review, we found that the visible red light wave-
lengths were used more than the infrared wavelengths in ex-
perimental studies. Some studies compared the red and
infrared wavelengths and obtained different results. In most
studies, the visible spectrum (600–700 nm) was effective for
cellular biostimulation. de Villiers et al.49 found an increase in
cellular viability and proliferation on human adipose-derived
MSCs (hADSCs) using a diode laser (Table 1). Mvula et al.50

reported that proliferation of ADSCs significantly increased
after exposure to a diode laser at 636 nm wavelength (5 J/cm2).

The diode laser was the most predominant light source used.
While He-Ne, Er:YAG, and ND:YAG were used as other
coherent light sources, LED sources were used as noncoherent
light sources (Table 2). Leonida et al.35 applied Nd:YAG laser
to bone marrow MSCs and found that after 7 days of prolif-
eration, the scaffold of the laser-treated group increased sig-
nificantly over that of the control group. Peng et al.51 used an
LED (620 nm) to irradiate bone marrow MSCs (BMSCs) with
and without osteogenic supplements. They found that in the
group without osteogenic supplements and under red LED (0,
1, 2, 4 J/cm2) increased proliferation of cells could be ex-
pected. In the group with osteogenic supplements, alkaline
phosphatase activity and differentiation increased and prolif-
eration decreased with LED irradiation.

The studies reviewed used laser doses of 0.7–9 J/cm2. The
power used for visible light was 30–110 mW and that used for
infrared light was 50–800 mW. One study investigated effect
of the Ga-Al-As laser (810 nm) with an energy density of 3 and
6 J/cm2 for differentiation of BMSCs to neurons and with an
energy density of 2 and 4 J/cm2 for differentiation to osteo-
blasts.39 PBM increased proliferation in all doses except for
6 J/cm2. Cellular differentiation increased at all doses. Solei-
mani et al.39 suggested that the effect of low-level laser therapy
(LLLT) on proliferation and differentiation is dose dependent.

Other parameters for irradiation, such as the effect of light
source and period of irradiation on MSCs, were different in
different studies. The minimum time point used was im-
mediately after irradiation and the maximum was 4 weeks
after laser treatment. MSCs were often derived from bone
marrow, adipose tissue, dental pulp, and periodontal liga-
ments. In most studies, proliferation and differentiation were
assessed, but the evaluation techniques differed. Most
studies showed a positive effect for LEDs and lasers on cell
proliferation and differentiation.

Farfara et al.47 evaluated the effect of LLLT on BMSCs
in mice with Alzheimer’s disease. They concluded that the
application of lasers improved maturation of MSCs and
increased phagositosis of Ab protein by elevating the acti-
vation state. de Oliveira et al.38 used a Ga-Al-As laser on
human MSCs (hMSCs) and rat MSCs (rMSCs) in a study of
nutritional deficiency, to examine the effect of LLLT on
adhesion, proliferation, gene expression of vascular endo-
thelial growth factor (VEGF), and type 2 receptor of VEGF
(VEGFR2). They reported that low nutritional support sig-
nificantly decreased proliferation. At lower doses (0 and 7 J/cm2)
proliferation increased and at higher doses (3 and 9 J/cm2)
adhesion increased. They suggested that different specimens
and laser doses could cause different results. Kim et al.45

showed that He-Ne is an effective biostimulator of wound
healing using adipose-derived mesenchymal stem cells
(ASCs) to stimulate secretion of GF in the wound bed.

The main effect of photobiostimulation therapy in clinical
or in vitro activity is proliferation. This effect activates the
mitochondrial respiratory chain and cell signaling by laser
irradiation.53 Red/NIR LED irradiation leads to heating at
the molecular level by ATP production.54,55 It appears that
laser phototherapy inhibits apoptosis, which increases sur-
vival of ASCs and produces GFs in the wound bed at the
functionally appropriate dose and wavelength.23,56,57 It is
possible for PBM to increase cell response by elevating the
mitochondrial membrane potential and ATP and cyclic
adenosine monophosphate (cAMP) levels.56

Two studies on animal brain tissue found that ATP content
increased in response to temperature elevation by red/NIR
LED. PBM also increased differentiation of stem cells.54,55 A
few studies investigated cell differentiation caused by laser
irradiation. Almost all showed a positive effect for PBM on
differentiation; however, some found no significant differ-
ence between the irradiated and control groups. One study
found that at 647 nm, red light transformed MSCs to osteo-
blasts58; however, Kim et al.45 found that differentiation of
ASCs was not noticeably different between the laser-treated
(632 nm) and control groups. Stein et al.59 found that LLLT
(632 nm) promotes proliferation and differentiation of human
osteoblast cells. Leonida et al.35 evaluated the effect of an
Nd:YAG laser (1064 nm) on MSCs. After 7 days, significant
proliferation was observed in the laser-treated scaffold and,
after 14 days, an exponential increase was observed in the
laser-irradiated group.

Visible NIR wavelengths were commonly used in the
studies. The most effective result was for visible wave-
lengths (600–700 nm), but some articles reported cell pro-
liferation at 780 nm60 and 860 nm.61 Anwer46 suggested that
mitochondrial activity increased at lower wavelengths.
There was a large range of wavelengths used that produced a
variety of results. It appears that biostimulation is dependent
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upon factors such as output power,62 energy density,63,64

and cell type.65 Hawkins,33 Mvula,50 and Anwer46 found
that PBM increased cell viability and proliferation. Most
in vitro studies indicated that different cell cultures do not
respond in the same way to lasers.66

The positive effect of PBM on proliferation of MSCs in
some studies suggests that lasers alone do not cause signifi-
cant cell differentiation. One study showed that noncoherent
red LED of BMSC specimens with osteogenic supplements
increased differentiation, but proliferation increased in the
group without osteogenic supplements.27 One theory is that
there is a reciprocal relationship between proliferation and
differentiation in MSCs.66 This theory also suggests that the
induction of osteogenic differentiation by red LED occurs
during proliferation. It theorizes that light alone cannot acti-
vate cell signaling pathway and could be an adjunct tool in
osteodifferentiation.27 It appears that more study is required,
especially for in vivo and clinical trials.

Conclusions

A review of articles has shown that PBM increases pro-
liferation of MSCs. These results depend upon factors such
as energy density, power output, frequency of radiation, type
of light source, and type of cell or medium culture. It ap-
pears that standardization of parameters in PBM by exper-
imentation is required to obtain the favorable results that
allow for more accurate comparisons.

This review found that doses of 0.7–4 J/cm2 and visible
wavelengths from 600 to 700 nm were the most appropriate
for PBM to increase cell proliferation. Although contrary
results have been mentioned in studies, most agreed that
PBM had positive effects of biostimulation of bone tissue
and increasing cell proliferation and differentiation and was
a helpful tool in regenerative treatments.
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